CertainC∗-algebras with real rank zero and their corona and multiplier algebras. Part I
نویسندگان
چکیده
منابع مشابه
Extremal Richness of Multiplier and Corona Algebras of Simple C∗-algebras with Real Rank Zero
In this paper we investigate the extremal richness of the multiplier algebra M(A) and the corona algebra M(A)/A, for a simple C∗-algebra A with real rank zero and stable rank one. We show that the space of extremal quasitraces and the scale of A contain enough information to determine whether M(A)/A is extremally rich. In detail, if the scale is finite, then M(A)/A is extremally rich. In import...
متن کاملSeparative Exchange Rings and C * - Algebras with Real Rank Zero
For any (unital) exchange ring R whose finitely generated projective modules satisfy the separative cancellation property (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown that all invertible square matrices over R can be diagonalized by elementary row and column operations. Consequently, the natural homomorphism GL1(R) → K1(R) is surjective. In combination with a result of Huaxin Lin, it follow...
متن کاملInvertibility-preserving Maps of C∗-algebras with Real Rank Zero
In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras andΦ : A→ B is a linear map onto B that preserves the spectrum of elements, thenΦ is a Jordan isomorphism if either A or B is a C∗-al...
متن کاملQuasi-Algebras versus Regular Algebras - Part I
Starting from quasi-Wajsberg algebras (which are generalizations of Wajsberg algebras), whose regular sets are Wajsberg algebras, we introduce a theory of quasi-algebras versus, in parallel, a theory of regular algebras. We introduce the quasi-RM, quasi-RML, quasi-BCI, (commutative, positive implicative, quasi-implicative, with product) quasi-BCK, quasi-Hilbert and quasi-Boolean algebras as gen...
متن کامل- Algebras of Infinite Real Rank
We introduce the notion of weakly (strongly) infinite real rank for unital C∗-algebras. It is shown that a compact space X is weakly (strongly) infine-dimensional if and only if C(X) has weakly (strongly) infinite real rank. Some other properties of this concept are also investigated. In particular, we show that the group C∗-algebra C∗ (F∞) of the free group on countable number of generators ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1992
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1992.155.169